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O Let X be a reflexive Banach space. In this article, we give a necessary and sufficient
condition for an operator T € F(X) to have the best approximation in numerical radius from
the convex subset U C H(X), where T (X) denotes the set of all linear; compact operators from
X into X. We also present an application to minimal extensions with vespect to the numerical
radius. In particular, some results on best approximation in norm are generalized to the case
of the numerical radius.
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1. INTRODUCTION

Let X be a Banach space over IR or C, using By for the closed unit
ball and Sy for the unit sphere of X. The dual space is denoted by X* and
the Banach algebra of all continuous linear operators on X is denoted by
B(X). The numerical range of T € B(X) is defined by

W(T) = {x*(Tx) : x € Sy, x* € Sy-, x"(x) = 1}.
The numerical radius of T is then given by
I TN, =sup{ld] : 1 € W(T)}.

Clearly, | - |, is a semi-norm on B(X) and [T, < | 7| forall T € B(X).
Observe that, for the operator norm, the supremum is taken over the set
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(x,x™) € B(X) x B(X*), while, for numerical radius the supremum is taken
over those (x, x™) € By x By«, for which x™(x) = 1.
The numerical index of X is defined by

n(X) = inf{| ]l : T € Sge).

Equivalently, the numerical index n(X) is the largest constant k£ > 0 such
that

RITI < IT 0.

for every T € B(X). Note also that 0 < n(X) <1, and n(X) > 0 if and only
if || - ||, and || - || are equivalent norms.

The concept of numerical index was first introduced by Lumer [34]
in 1968. Since then much attention has been paid to this constant of
equivalence between the numerical radius and the usual norm in the
Banach algebra of all bounded lincar operators of a Banach space.
Classical references here are [6, 7]. For recent results, we refer the reader
to [1, 2, 17, 18, 20, 32, 35].

Existence and uniqueness of best approximation in particular subsets
of 9 c B(X) in the operator norm is one of the basic questions of
approximation theory. One very important case of U is a set of all linear
continuous projections from a Banach space X onto its subspaces Y. More
precisely, let ¥ C X be a linear, closed subspace. A linear map P: X — ¥
is called a projection if Py = y for any y € V. Clearly, if Y # {0}, then || P|| > 1
for any projection P. The set of all projections going from X onto Y will
be denoted by ?(X, V). Minimal projections play a special role among all
projections. A projection P, € ?(X, Y) is called minimal if

12, = inf{| P : P € P(X, Y)} = dist(0,P(X, Y))}.

There is a lot of previous research concerning minimal projections.
Primarily this work addresses problems of finding minimal projections
effectively and estimating norms of minimal projections and uniqueness of
minimal projections. (e.g., [1, 8-16, 19, 21-31, 33, 36, 37, 39-41, 43]).

Now suppose that V is a subset of a Banach space X and x € X\ V.
Denote by Py (x,) the set of all best approximants to x in V. Wesay vy € V
is a strongly unique best approximation (SUBA) to x, if and only if there exists
r > 0 such that for all we V

% — |l = llx0 — wll + rllu—wl.

It is clear that if w, is a SUBA then v, € Py(x,). It is also casy to see that ,
is the only element of best approximation. There are natural examples of
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SUBA. Here we mention the most important one. Let X = C[0,1] and V,
be the subspace of polynomials of degree less than or equal to n. If [ is
any element of C[0,1] and P, € Py, (f) then F, is a SUBA to f.

Also strong unicity can be applied in the proof of the SUBA Theorem
[12, p. 80] in the case of polynomial approximation} concerning the
Lipschitz continuity of the best approximation operator. More precisely, let
V C X and (x,) € X with x, = x. Supposc Py(x,) is a best approximation
to x, in V and x has a SUBA element Py(x) with the constant r > 0. Then

2
1Py () = Py(o)l| < —ll%n — x[.

Also, the strong unicity constant plays a crucial role in the estimating of
the error of the Remez algorithm (see [12, p. 97]). For further details
concerning strong unicity we refer to [5, 12, 25, 26, 42].

The aim of this article is to prove some criteria for best approximation
and SUBA with respect to the numerical radius and somc related
seminorms. More precisely, let X be a reflexive Banach space (we consider
both the real and the complex cases) and let Z(X) denote the set of all
compact operators from X into X. Let us consider

B= th X Bx (1.1)
with the Tychonoll topology induced by the weak*-topology in Bx- and
by the weak-topology in By. By the Banach-Alaoglu Theorem and the
Tychonoff Theorem, 3 is a compact set. Assume that W C B is a fixed,
nonempty and compact subset of &. Define for L € X(X)

IZllw = sup{l«*(L)] : (x*, ) € W}.
It is clear that || - || is a semi-norm on F(X). Let
W(X) = H(X)/(R),
where (R) is an equivalence relation on ¥(X) x Z(X) defined by
L(R)T ifandonlyif |L—- T}y =0.
Note that ¥ becomes a Banach space with the norm

ILYw = ILllw-

Here, the symbol [L] denotes the equivalence class of L with respect
to (R).
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In this article, we prove some criteria for best approximation and
SUBA in the quotient space T (X) where X is a reflexive space. Also an
application to minimal extensions with respect to the numerical radius
will be presented. It is worth noticing that [1] gives a characterization
of minimal numerical-radius extensions of operators from a normed
linear space X onto its finite dimensional subspaces and comparison with
minimal operator-norm extension.

We will use the following results throughout the article. Let X be a
Banach space and let ext(Sy.) denote the set of all extreme points of Sy..
For any x € X set

E(x) = {f € ext(Sx-) : f(x) = |1 x]l}.

We have E(x) # @ for any x € X, by the Banach-Alaoglu Theorem and the
Krein-Milman Theorem.

Theorem 1.1 ([5]). Let V C X be a convex set and let x, € X. Then v, € V
is a best approximation to x, in V if and only if for any v € V there exists [ €
E(x — v,) with
re(f(v—1v,)) <0.
If V is a linear subspace, the above inequality can be replaced by
re(f(v)) < 0.
Here for z € C, the symbol re(z) denoles the real part of z.
Theorem 1.2 ([42]). Let V C X be a convex set and let x, € X. Then v, € V
is a SUBA to x, in V with r > 0 if and only if for any v € V there exisis [ €
E(x — v,) with the following:
re(f(v—1v,)) < —rllv -1

If V is a linear subspace the above inequality can be replaced by

re(f(v)) < —r|vl.

2. MAIN RESULTS

In the complex case define for any 0 € [0,2n]

Wy = {(e“x*,x) : (x*,x) € W}
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and
z=|J w. (2.1)
0€(0,2n)
Set for any T € W(X)
Wr = {(x*,x) € Z: x(Tx) = |[T]lw}. (2.2)

Observe that the above definition does not depend on a particular
representation of [T]. To define Wr in the real case we should replace the
set Z by

Zg = WU{(—x",x): (x*,x) € W} (2.3)
We start with
Lemma 2.1. Let X be a reflexive space. Then for any T € W(X), Wr # 0.

Proof. Fix [T] € W(X). First we consider the complex case. If [T] =0,
then Wr = Z. Hence we can assume that [7] # 0. Fix L € [T]. Define a
function ®(L) : B - C by

O(L)(x*, x) = x*Lx.
Now we show that ®(L) is a continuous function. To do this, fix a net {z, =
(%7, %)} C B tending to z = (x", ). Since L is a compact operator, passing

to a convergent subnet, if necessary, we can assume that ||Lx, — Lx|| — 0.
Consequently,

|y Lx, — x"Lx| < [|Lxy — Lx[l + 1(x) — x*)(Lx)| =, 0.
which is a contradiction. Notice that by definition of ®,
sup{|®(L)(z)| : z € Z} = sup{|®(L)(w)| : w € W}.

Since ®(L) is continuous and W is a compact set there exists w, =
(x3,%,) € W such that

|®(L)(w,)| = sup{|$(L)(z)| : z € Z}.

Since [T] # 0, |®(L)(w,)] # 0. Set ¢® = sign(x*Lx,), where sign(y) = /|3l
for y € C\{0}. Let z = {¢"«, x,}. Notice that

D(L)(2) = |D(L)(w)l,

which shows that Wy # 0, as rcquired.
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The proofin the real case goes exactly in the same way with Z replaced

by Zr defined by (2.3). O

Theorem 2.2. Let X be a wflexive Banach space and W C B be a fixed,
nonempty, compact subset of B. Let U C W (X) be a nonempty convex subset of
W(X). An element L € U is a best approximation to T € W(X) if and only if for
any U € U there exists (x°, x) € Wr such that

re(x*(U — L)x) <0. (2.4)

Proof. First, we consider the complex case. Take Z defined by (2.1). First,
we show that Z is a compact subset of 9. Since % is a compact set, it
is sufficient to demonstrate that 7 is a closed subset of 9. To show it,
fix a net {z, = (e”"-‘x;,x).)} C Z converging to z = (x*,x) € %. Passing to
a convergent subnet, if necessary, we can assume that ¢ — ¢ Hence,
x;‘ — ¢~ %%* which, by the compactness of W, shows that ( ex* x) e W.
Hence (x*, x) € Z, which shows our claim.

Let C(Z) denote the space of all continuous, complex-valued or real-
valued functions defined on Z equipped with the supremum norm || - [[sup-
Let @ : W (X) — C(Z) be defined by

OLD(x*, x) =« Lx

for any (x*,x) € Z. Reasoning as in Lemma 2.1 we can show, applying
compactness of L, that ®[L] is a continuous function on Z, where Z is
endowed with the topology induced from 3 given by (1.1). Moreover, @ is
a linear isometry. Consequently, L is a best approximation to T in % if and
only if ®(L) is a best approximation to ®(T) in ®(%). By Theorem 1.1 and
the form of extreme points of the unit sphere in C*(Z), this is equivalent
to the fact that for any ®(U) € ®(U) there exist (x*,x) € Z such that
(T - L)(x*, x) = |P(T — L)||sup and

Re((®(U) — D(L))(x%, x)) = re(x"(U — L)x) <0,

which completes the proof in the complex case. The proof in the real case
goes in the same way with Z replaced by Zg given by (2.3). O

Applying Theorem 1.2 and a similar reasoning used in Theorem 2.2
we can prove:

Theorem 2.3. et X be a wflexive Banach space and W C B be a fixed,
nonempty, compact subset of B. Let U C W (X) be a nonempty convex subset of
W(X). An element L € U is a SUBA to T € W(X) with r > 0 if and only if for
any U € U there exists (x™, x) € Wy such that

x*(U — L)x < 7?‘"U == L]lw
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Remark 2.4. Note that in Theorems 2.2 and 2.3 we can replace set Wy by
Er = Wy N (ext(Sy~) x ext(Sy)).
Indeed let (x*, x) € Wy satisfy re(x™(U — L)x) < 0. Set
N, = {2* € By« : 2"(x) = [|x]| = 1}.

It is clear that N, is a nonempty, convex and weak'-closed subset of By.. By
the Banach-Alaoglu Theorem and the Krein-Milman Theorem, ext(N,) 7#
0. Moreover, ext(N,) C ext(Sy-). Indeed, assume that z* € ext(N,) and z* =
ax* + by*, where a,b > 0,2+ b =1 and x*,y* € Sy-. Since

1 =2%(x) = ax*(x) + &’(x) <1,
x*(x) =1 and y*(x) = 1. Since z* € ext(N;) and x7,y" € N,, x* = 3", which
shows our claim.
Now, consider a function

g(w*) = re(w* (U — L)x).

Since g is a linear functional on X* and 7 (x™(U — L)x) <0, there exists
2t in ext(N,) C ext(Sy-) with

re(z"(U — L)x) < 0.
Now set
N+ ={x€ By :z°(x)= |27 = 1}.

Since X is reflexive, by the James Theorem N # . Reasoning as we did
above, we get that there exists z € ext Sy satisfying z*(z) = 1 with

re(z"(U — L)z) <0,

which shows our claim in the case of Theorem 2.2. The same reasoning
works in the case of Theorem 2.3,

Remark 2.5. Note that in Theorems 2.2 and 2.3 we can replace #(X) by
any subspace @ of #(X). In this case the equivalence relation (R) should
be replaced by its restriction to <% x %,

Corollary 2.6. Asswme that X is a finite-dimensional space. For any number q
with 0 < g <1, set

W, = {(Coe*, %) 1 o (x) =29
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Also define “g-numerical range” for T € B(X) by
Wy(T) = {x*(Tx) : lIxll = lIx"]l = 1(x,x%) = q}
and
170w, = sup{lAl : 2 € W,('1)}.
Then the conclusion of Theorems 2.2 and 2.3 remain true for the best approximation
i W(X) with respect to || - ||w,. If we put q=1 we get criteria for the best

approximation with respect to the numerical radius.

Proof. Since X is finite-dimensional, the set W, is a compact subsct of %.
Hence Theorems 2.2 and 2.3 can be applied to || - ||, O

For more details on g-numerical range we refer to [3].

Remark 2.7 If X is reflexive and W = % = By- x By, Theorems 2.2 and
2.3 have been proved in [36] (see also [26]).

3. AN APPLICATION

Investigating minimal projections in 2(X, V) C B(X) with respect to
various semi-norms on B(X) raises the question of on what subspaces of
B(X) semi-norms are actually norms. The following lemma provides an
answer to this question in the case of the numerical radius || - |,
Lemma 3.1. Let X be a Banach space, V its n-dimensional subspace, and

By(X,V)={LeB(X,V): Lly=0}
Let for A € B(V),
Al = sup{lv*Av| : (v* € By-, V € By, v"(v) = 1},

Suppose A € B(VI\{0} with ||Al|, > 0 and Ay € B(X, V) with Ay|ly = A a fixed
operator. Consider a subspace

7y C B(X,V)
defined by
Zy = span[Ag) @ By (X, V),

where by span|Ag] we mean the subspace spanned by Aq. Then the semi-norm |||,
defined with respect to the subspace Z, is actually a norm on Z.
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Proof. Let L € Z,\{0}; we want to show || L], > 0. Since L € Z, then L =
oAy + L, where c e R and L, € By (X, V).

Case 1. Assume o # 0:
From our assumption [|A],, > 0, we know that for some v € (V) and
vt e §(V*) with v*(v) = 1 we have |v*Av| > 0. Let x* € Sy« be the Iahn-
Banach extension of v* to X, then

X*Lv=oax"Agv + x"(Lv).

Since Liv =0 and Ay|y = A, " Lv = ax"Av with ¢ # 0 and |v*Ay| > 0 and
therefore || L], > 0.

Case 2. Assume o = 0:
Let L e By(X, V)\{0} and set L = Zf:]_ﬁ(-)vi, where v, vo,...,0 €
V\{0} and fi, fs, ..., [k € X* are such that

o fly=0fori=1,2,...,k
o {f}, is a linearly independent set.

Let

k k
X = mkcr(ﬁ) and X, = ﬂkcr(ﬁ).
1=1

(Weput Xy =X ifk=1).

Since {fi}, is linearly independent, we know V C X, ¢ X;. Fix x €
X\X; such that 0¢ %y, (x) where Vi = span[v;]. By %y, (x) we mean the
set of best approximation to x from V;. Without loss of generality assume
llxll = 1.

Then by the Hahn-Banach Theorem for any x* € §(X*) with x*(x) =
1, we have x*(v;) # 0 and hence

k
Ly = x*( Zﬁ(x)v,-) =x"(fi(x))v = fi(x)x"(v) #0
1=1

giving again ||L||, > 0. O

Remark 3.2. Note that [/dy|, =1. Hence |.||, is actually a norm in
restriction to Z,,. Notice that (X, V) is an affine subspace of B(X). In
fact,

PX,Vy=P,+ By(X,V)
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for any projection P, € ?(X,V). Hence it is easy to see that Z,, =
span|P,] & By(X, V) is the smallest linear subspace containing (X, V).

In [37], it was shown that for any three-dimensional real Banach space
X and any of its two-dimensional subspace V if the infimum with respect
to the operator norm over (X, V) is greater than one, then there exists
the unique projection of minimal operator norm. Later in [25] (see also
[26]), this result was generalized as follows:

Let X be a three dimensional real Banach space and V a two
dimensional subspace of X. Suppose A € B(V) is a fixed operator. Set

Pu(X,Y)={P e B(X,Y): Py = A}

and assume ||yl > [|A], where Py, € 2,(X,Y) is an extension of minimal
operator norm. Then F; is a SUBA minimal extension with respect to the
operator norm.

In other words, for all P € %4(X, Y) one has

1Pl = IFoll + 7 1P — Fol

Definition 3.3. We say an operator 0 is a SUBA to A, with respect to
numerical radius in B(X) if Ag|y = A and there exists » > 0 such that

IBllw = Aol + 711B — Aol
forany B € B(X, V) with B|y = A.

A natural extension of the above result to || - ||, is as follows:

Theorem 3.4. Assume that X is a three dimensional real Banach space and let
V be a two dimensional subspace of X, and that A € B(V) with ||All, > 0. Let

M= 25X, V) =inf{|| Aoll : Ao € B(X, V) Aoly = A} > [|A]],

w w

where || A|| denoles the operator norm. Then there exists exactly one Ag € B(X, V)
such that Agly = A and

AL = 1 Aol
Moreover, 0 is a SUBA to A, with respect to numerical radius in By (X, V).
Proof. Since ||A|, > 0, by Lemma 3.1 | - ||, is @ norm on Z,. Since X is

finite-dimensional, any operator L. € Z, possesses a best approximation in
By (X, V) with respect to the | - ||... Hence, there exists A, € #4(X, V) such
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that [|A,|l. = 21. Let W,, be defined by (2.2). Set for any (x*,x) € X* x X
and L € B(X)

(x*® x)(L) = x"(Lx).

Note that x* ® x is a linear, continuous functional on 5(X) for any (2%, x) €
X*x X. Let

= By, 2) e W)

First we show that 0 € conv(C|g, (x,v)). Assume that this is not true. Since X
is finite-dimensional and C is a compact set, by the Carathéodory Theorem
(see [12]) conv(Clp,(x.v)) is also a compact set. Since 0 ¢& conv(Clg,(x,v))s
by the Separation Theorem there exists L € By (X, V) such that

(x*®x)(L) = x"(Lx) > 0

for any (x* x) € W,,. By Theorem 2.2 applied to A, and By(X,V), it
follows that A, is not a minimal extension of A which is a contradiction,
Consequently,

k
=ZC€(\ ® X))y (x.v)s (3.1)
)

where ¢ > 0 and ZL] a; = 1. Let k, = min{k : k satisfies 3.1}. Note that
dim(Bv(X,V)) =2, since dim(X) =3, and dim(V) =2. Ience, by the
Carathéodory Theorem, (see [12]), we conclude that k, < 3.

Now we show that k, = 3. Assume this is not true. If k, =1, then
(x* ® %), x.v) = 0 for some (x*,x) € W,,. Fix [ € X*\{0} satisfying V =
ker(f). Since

Aol > 1A = 1Al

it follows that f(x) # 0. Take L € By(X, V) given by Lz = f(z)A,x. Note
that

%" (Lx) = f(x)x"(Asx) = f()] Aol £ 0,

which leads to a contradiction. Now assume that k, = 2. Then

0= a(x' ®x)|g, vy + &y ®)|syx.v) (3.2)
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where @ > 0,4y >0 and @ + a, = 1. First, we show that x and y are
linearly independent. If not, since ||x|| = ||yl = 1, we have x = y or x = —y.
By (3.2) taking L = f(-)A,x we get

0=af()4ll. + (1 = a)/ (A

which gives f(x) = 0. Hence ||A,[l., = | All., < |A] which is a contradiction.

Now we show that x*|y = by'|y for some b7 0. Note that, since
x*(A,x) =y (A,y) = [|All,, we have x*|y # 0 and y*|y # 0. If x*|y and y*|y
were linearly independent, then we could find v € V such that x*(z) =1
and y*(v) = 0. Set S = f(-)v. By (3.2) applied to § we get

0=af(x)x"(v) = aqf(x).

Since f(x) # 0, it follows that @ = 0 is a contradiction. By (3.2) applied to
L= f()A,y we get

0= abf (x)y" (Ay) + (1 — a)f (N (A)) = | Aullw(f (@ bx + (1 — a1)y)

and conscquenty f (e bx 4+ (1 — a)y) = 0. Since f(x) # 0 and f(y) # 0, we
can find exactly one ¢ > 0 such that f(agx+ (1 —a)y) =0if f(x)f(y) <0
or f(a(=x)+ (1 —a)y) =0if f(x)f(y) > 0.

Since x and y are linearly independent we get that, b = 1 if f(x)f(y) >
0and b =—11il f(x)/(y) < 0. Conscquently,

Y (A (ax+ (1 =-a)y) = |4
if f(x)f(y) > 0and
Y (As(a(=x)+ (1 —a)y) = Al

if £(x)f(y) < 0. But this leads to ||A,]l. < [ Al, which is a contradiction.
Hence, we have proved that k, = 3. By (3.1), we get

3
0= Zﬂj(ﬁf®99')|3y(x.l-'); (3.3)
j=1

where ¢; > 0, for i =1,2,3 and @ + ao + a3 = 1.

Now we show that for any i, # € {1,2,3}, 4 # &, it follows that g =
(x§;®x,])|3“_\-,p) and @ = (x;@x,l)l,;,.(_yll,-, are linearly independent. Withc_)ut
loss of generality we can assume that i = 1 and 3 = 2. If not, there exists
a, b € R such that |a| + |§] > 0 and

agy + bz = 0. (3.4)
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Since k, = 3, we have a # 0, b # 0 and ab < 0. Without loss of generality,

we can assume that ¢ > 0. Multiplying (3.4) by —as/b and adding it to (3.3)
we get

((a + a(—ag/0)(x ®x) + a3(x5®x)) gy (x,v) = 0.

Since —ap/b >0, and k, =3, we get a contradiction, so g and g are
linearly independent.

Now take any L € By(X, V), define with ||L]l, = 1. Since g and g
are linearly independent and by (8.3) there exists i € {1,2,3} such that
(xr®x,)(L) = xf(Lx;) < 0. For L € By(X, V), with |[L], =1, define

gLy =min[(x}Qx]L: i= 1,2,3]).

It is clear that g is a continuous function on Sp,(x,v) and g(L) < 0 for any
L € Sp,(x,v)- Since X is finite-dimensional, Sg, (x.v) is a compact set and

s =sup{g(L) : L € Sp,x,n} < 0.
Now take any L € By (X, V)\{0}. Then there exists i € {1,2, 3} such that
g(L/ILNl) = (x®x)(L/|ILIl.) < s

Theorem 2.3 implies that 0 is a SUBA to A,, with r = —s, and the proof is
complete. O

Notice if we take A = Idy then [|A|l, =[A| =1. In this situation
Theorem 3.4 takes the following form.

Theorem 3.5. Assume that X is a three-dimensional real Banach space and lel
V be its two-dimensional subspace. Asswme thal

Aty o
Then there exists exactly one Py € P(X, V) of minimal norm. Moreover 0 is a
SUBA to P, with respect to the numerical radius in By (X, V). In particular, P, is

the only minimal projection with respect to the numerical radius.

Remark 3.6. In Theorem 3.4 the assumption that [|A] < 45(X,V) is
essential.

Indeed, let X =1, V={x € X : 5 + % =0} and A = Idy. Define

Pix=x— (% + %)(1,0,0)
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and
Pox = x— (x + x)(0,1,0).
It is clear that
1P = 1Pl = (1Pl = [ Pall = 1

and P, # P,. Ilence, there is no strongly unique minimal projection in this
case.

Remark 3.7. Thcorem 3.4 cannot be generalized for real spaces X of
dimension » > 4.

satsfies f; > 0 for i =92,...,m, Yohofi=land i<1/2fori=1,...,n It
is known (see [4, 36]) that in this case

Indeed let X = [, and let V = ker(f), where [ = (0, fs,..., /) € [

n = |
MX, V) =inf{|P] : P e P(X,V)} =1+ (Zﬁ/(l ~ 2f,-)) > 1.
i=2

By [1], A(X,V)=A"(X,V). Define for i=2,...,n y=(MX,V)—
1)(1 —2f). Let y=(3,...,y) and z=(0,ys,...,y,). Consider mappings
P, Py defined by

Pix=x—f(x)y
and

Pix=x—f(x)z

for x € IV, Tt is easy to see that P, e P(X,V), for i=1,2, A # . By
(36, p. 104] |P] = |P]l. = A(X, V) =2 for i =1,2.

Remark 3.8. Theorem 3.4 is not valid for complex three-dimensional
spaces.

Let X = [¥ (in the complex case) and let
V={zeX u+n+z=0}

Let y = (1,1,1). We show that

71+ 2+
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is a minimal projection in (X, V) with respect to the numerical radius
and that

121l = 4/3.
Let [ = (1/3,1/3,1/3). It is easy to see that (compare with [36, p. 103])

IPl| = max{|(Px);)|,j = 1,2,3, [zl = 1}
= max{|1 —j}yj| +y),-(l -fj= 1,2,3) = 4/3.

Note that for j =1,2,3
(6 ® )P = (Px); = 4/3,

where x'=(l,—1,-1), x*=(=1,1,-1) and »*=(-1,—1,1). Since
g(x') =1for j=1,2,3, we have |P|, = 4/3. Also it is casy to sec that

VVP — {(6", x-’) / - 1,2,3}

Notice that
3
Z("j ® ) pyxvy =0
j=1

By Theorem 2.2 and Remark 2.5, it follows that 0 is a best approximation
to P in By(X, V) with respect to the numerical radius, which means that
P is a minimal projection with respect to the numerical radius.

Now define z=1i(1,1,-2) and let L=f()z. It is clear that L€
By (X, V). Note that for j =1,2,3

re((g®x)L) = re(f (¥')z) = f(¥/)re(z) = 0.

By Theorem 2.3, 0 is not a SUBA to P in By (X, V), which proves our claim.
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